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Abstract Let Mn, n ∈ {4, 5, 6}, be a compact, simply connected n-manifold which admits
some Riemannian metric with non-negative curvature and an isometry group of maximal
possible rank. Then any smooth, effective action on Mn by a torus Tn−2 is equivariantly
diffeomorphic to an isometric action on a normal biquotient. Furthermore, it follows that
any effective, isometric circle action on a compact, simply connected, non-negatively curved
four-dimensional manifold is equivariantly diffeomorphic to an effective, isometric action
on a normal biquotient.
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The classification of (compact) Riemannian manifolds (Mn, g) with positive or non-negative
(sectional) curvature is a notoriously difficult problem. One of the few successes in this quest
occurs when one considers such manifolds equipped with an effective action by a suitably
large group G of isometries. The ambiguity of the term “suitably large” allows various
classification results to be achieved (see, for example, [2,13,14,16,31–34] and the surveys
[12,35]).

There are, in fact, two parts to the classification program. First is the topological clas-
sification, the goal of which is to determine, up to diffeomorphism, all possible positively
or non-negatively curved manifolds on which G can act. The second part is the equivariant
classification, where the goal is to determine all possible actions of G on a given positively
or non-negatively curved manifold up to equivariant diffeomorphism.
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134 F. Galaz-Garcia, M. Kerin

This approach to the classification problem is inspired by the work of Hsiang and
Kleiner [18]. They showed that a simply connected, four-dimensional manifold (M4, g)

with positive curvature admitting an effective, isometric circle action must be homeomor-
phic to either S4 or to CP2. If (M4, g) is assumed to have only non-negative curvature
then, by Kleiner [20] and Searle and Yang [29], M4 must be homeomorphic to one of
S4, CP2, CP2# ± CP2 or S2 × S2. In both situations, homeomorphism is improved to
diffeomorphism by appealing to work of Fintushel [8,9], Pao [26] and Perelman’s proof of
the Poincaré conjecture [27,28].

The existence of an effective, isometric circle action is equivalent to the rank of the
isometry group Iso(Mn, g) being positive. The success in dimension four suggests that it
may be beneficial to consider the topological classification when “largeness” of our group G
of isometries refers to the symmetry rank of (Mn, g), defined as the rank of Iso(Mn, g) and
denoted symrank(Mn, g). Indeed, Grove and Searle [13] showed that if (Mn, g) is positively
curved, then symrank(Mn, g) � � n+1

2 �. Moreover, if the symmetry rank is maximal, namely
symrank(Mn, g) = � n+1

2 �, then Mn is diffeomorphic to a sphere, a real or complex projective
space, or a lens space.

In the non-negative curvature setting, when (Mn, g) is compact, simply connected and
n � 9, it is known that symrank(Mn, g) � � 2n

3 �. If equality holds, then Mn is diffeomorphic
to S4, CP2, CP2#±CP2 or S2 ×S2 for n = 4; to S3 ×S2, S3×̃S2 (the non-trivial S3-bundle
over S2) or S5 for n = 5; and to S3 × S3 for n = 6 (cf. [11]).

This article is concerned with the equivariant classification in low dimensions. Before the
statement of the main result, it is necessary to recall that a biquotient is a quotient of a Lie
group G by the two-sided, free action of a subgroup U ⊂ G × G. If G is equipped with a
bi-invariant metric, then the action of U is by isometries and the quotient G// U equipped
with the induced metric (of non-negative curvature) is called a normal biquotient.

Theorem A Let Mn, n ∈ {4, 5, 6}, be a compact, simply connected n-manifold which admits
a Riemannian metric with non-negative curvature and maximal symmetry rank. Then every
smooth, effective action on Mn by a torus Tn−2 is equivariantly diffeomorphic to an effective,
isometric action on a normal biquotient.

In light of the topological classification discussed earlier, we make the following remarks.
Any smooth, effective T4 action on S3 × S3 is equivariantly diffeomorphic to the standard
action of T4 on the Lie group S3 ×S3 equipped with a bi-invariant metric (cf. [22]). From [23]
it follows that any smooth, effective T3 action on S5 is equivariantly diffeomorphic to a linear
action (on a normal homogeneous space). Similarly, by the classification result of Orlik and
Raymond [24], any smooth, effective T2 action on S4 or CP2 is equivariantly diffeomorphic
to a linear action (on a normal homogeneous space).

In order to establish Theorem A, it therefore remains only to consider the actions of
maximal rank tori on the manifolds CP2# ± CP2, S2 × S2, S3 × S2 and S3×̃S2. Each of
these manifolds can be described as a normal biquotient of S3 × S3 by the free action of
either a two-torus or circle (cf. [4,5,25,30]). The standard effective, isometric action of T4

on the Lie group S3 ×S3 induces a maximal rank, effective, isometric torus action on each of
these biquotients. An examination of all possible induced actions on these biquotients then
shows that every equivariant diffeomorphism type appearing in the classifications of Orlik
and Raymond [24] and Oh [23] is achieved.

Grove and Wilking [15] have recently shown that an effective, isometric circle action on S4

or CP2 is equivariantly diffeomorphic to a linear action. Furthermore, any effective, isometric
circle action on a compact, simply connected 4-manifold with non-negative curvature extends
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Cohomogeneity-two torus actions in low dimensions 135

to a smooth, effective T2 action (cf. [10,15]). This fact, in combination with Theorem A, can
be applied to CP2# ± CP2 and S2 × S2 to draw the following conclusion.

Corollary B An effective, isometric circle action on a compact, non-negatively curved, sim-
ply connected 4-manifold is equivariantly diffeomorphic to an effective, isometric action on
a normal biquotient.

It is worthwhile to remark that there exist smooth, effective (non-isometric) circle actions
on S4 which do not extend to a smooth T2 action (cf. [26]).

The paper is divided as follows. In Sect. 1 definitions and notation necessary for the
rest of the paper are gathered. In Sect. 2 some general facts about smooth, cohomogeneity-
two torus actions are recalled, while in Sects. 3 and 4 all possible orbit spaces of smoooth,
cohomogeneity-two torus actions on the manifolds CP2# ± CP2, S2 × S2, S3 × S2 and
S3×̃S2 are detailed. In Sect. 5 descriptions of these manifolds as biquotients are given and
in Sects. 6 and 7 it is shown that isometric, cohomogeneity-two actions on these biquotients
recover all of the orbit spaces described in Sects. 3 and 4, thus proving Theorem A. Finally,
in Sect. 8 we make some observations about principal circle bundles over the 4-manifolds
CP2# ± CP2 and S2 × S2.

1 Basic definitions and notation

Let G × M → M, m �→ g � m, be a smooth action of a compact Lie group G on a smooth
manifold M. We will denote the orbit space M/G of the action by M∗. The cohomogeneity
of the action is the dimension of the orbit space M∗. The orbit G �p through a point p ∈ M
is diffeomorphic to the quotient G/Gp , where Gp := {g ∈ G | g � p = p} is the isotropy
subgroup of G at p. If Gp acts trivially on the normal space to the orbit at p, then G/Gp is
called a principal orbit. The set P of principal orbits is open and dense in M. In fact, the
isotropy groups of principal orbits are all conjugate in G, hence each principal orbit has the
same dimension.

If G/Gp has the same dimension as a principal orbit, but Gp acts non-trivially on the
normal space at p, then G/Gp is called an exceptional orbit. An orbit that is neither principal
nor exceptional is called a singular orbit. The set of exceptional orbits will be denoted by E
and the set of singular orbits by Q. When Gp = G, p is called a fixed point of the action.
The set of fixed points of the action will be denoted by Fix(M, G).

Given a subset X ⊂ M, we will denote its projection under the orbit map π : M → M∗
by X∗. Given a subset X∗ ⊂ M∗, we will let X = π−1(X∗) be its pre-image under π . Recall
that the ineffective kernel of the action is Ker := {g ∈ G | g � m = m, ∀ m ∈ M}. The
action is effective if the ineffective kernel is trivial. The group ˜G := G/Ker will always act
effectively. We say that the action of G is free if g � m = m for some m ∈ M implies that
g = e, the identity in G. In this case the orbit space M/G is a manifold. We may expand our
definition of freeness to allow an ineffective kernel, namely g � m = m for some m ∈ M
implies that g � m = m for all m ∈ M. In this case, the orbit space M/G is again a manifold,
diffeomorphic to M /˜G, where ˜G = G/Ker acts freely and effectively on M. If, in addition,
there is a metric on M such that the action of G is by isometries, then there is an induced
metric on M/G, given by the distance between orbits in M.

Let a1, . . . , an ∈ Z be relatively prime integers. Define the circle subgroup of slope a =
(a1, . . . , an) ∈ Zn in Tn via G(a) = G(a1, . . . , an) := {za1 , . . . , zan ) | z ∈ C, |z|2 = 1}.
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136 F. Galaz-Garcia, M. Kerin

By the determinant of n circle subgroups G(a1), . . . , G(an) of Tn we mean the determinant
of the (n × n)-matrix

⎛

⎜

⎜

⎜

⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

a31 an2 . . . ann

⎞

⎟

⎟

⎟

⎠

where ai = (ai1, . . . , ain) ∈ Zn .
We recall that two subgroups G(a1) and G(a2) of Tn have trivial intersection if and only

if there exist G(a3), . . . , G(an) ⊂ Tn such that the determinant of these n circle subgroups
is ±1. A collection of n circle subgroups G(ai ), i = 1, . . . , n, span Tn provided their
determinant is non-zero, i.e. the vectors a1, . . . , an span Rn . They are generators of Tn , that
is, Tn = G(a1) × . . . × G(an), if and only if their determinant is ±1.

Consider now a closed subgroup U ⊂ G × G acting on a compact Lie group G via

(u1, u2) � g = u1gu−1
2 , g ∈ G, (u1, u2) ∈ U .

This action is free if and only if, for non-trivial (u1, u2) ∈ U, u1 is never conjugate to u2

in G. The resulting quotient manifold, denoted G // U, is called a biquotient. As discussed
above, we may extend the definition of biquotient to allow actions which act freely up to an
ineffective kernel (cf. [7]). In particular, if G is equipped with a bi-invariant metric 〈 , 〉0,
then U acts by isometries and (G, 〈 , 〉0)// U is called a normal biquotient.

2 Cohomogeneity-two torus actions

Let Mn+2 be a smooth, compact, simply connected (n + 2)-manifold on which a compact,
connected Lie group G acts smoothly, effectively and with cohomogeneity two. It is well-
known (see, for example, [3, Chapter IV]) that in the presence of singular orbits, the orbit
space M∗ of the action is homeomorphic to a 2-disk D2 with boundary Q∗, the projection
of the singular orbits, while the interior points of M∗ correspond to principal orbits. When
G = Tn, n � 2, the orbit space structure was analyzed in [21,24] (see also [23]). In this
case the only possible non-trivial isotropy groups are S1 and T2. The boundary circle, Q∗,
is a union of arcs, and the interior of each arc corresponds to orbits with isotropy S1, while
the endpoints of each arc correspond to orbits with isotropy T2 (see Fig. 1). Moreover, there
must be at least n orbits with isotropy T2.

Fig. 1 Orbit space of a Tn action on Mn+2
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Cohomogeneity-two torus actions in low dimensions 137

Suppose, on the other hand, that n � 2 and M∗ is a two-dimensional manifold homeo-
morphic to D2. Partition the boundary of M∗ into N (ordered) arcs (N � n) and to each
arc assign an n-tuple xi = (xi1, . . . xin) ∈ Zn, i = 1, . . . , N , where gcd(xi1, . . . , xin) = 1.
Consider each of these n-tuples xi to be the slope of a circle G(xi ) in Tn . We say that M∗
is legally weighted with weights {x1, . . . , x N } if, for any two adjacent slope vectors xi and
xi+1 (i cyclic index), there exist n − 2 other n-tuples in v1, . . . , vn−2 ∈ Zn such that the
(n × n)-matrix with rows xi , xi+1, v1, . . . , vn−2 has determinant ±1. This is equivalent to
saying that the circles G(xi ) and G(xi+1) have trivial intersection, that is, there exist n − 2
other circles in Tn such that together the circles generate (the homology of) Tn . By [23], for
any legally weighted, orientable 2-manifold M∗ there is an (n + 2)-dimensional manifold M
with orbit space M∗ under an effective Tn action.

In fact, following similar techniques to those used in [24], Oh [23] showed that two (n+2)-
manifolds M and M′ with smooth, effective Tn actions are equivariantly diffeomorphic if and
only if there is a weight-preserving diffeomorphism between their orbit spaces M∗ and (M′)∗.

Therefore, given an (n + 2)-manifold M equipped with a smooth, effective Tn action, we
may represent M uniquely in terms of its weighted orbit space:

Mn+2 = {

x1, . . . , x N

}

, N � n � 2,

where x1, . . . , x N ∈ Zn and gcd(xi ) = 1, for i = 1, . . . , N .
Moreover, [23] has used the (legally) weighted orbit space M∗ to give information about

the fundamental group of the manifold M. Indeed, if M∗ is a 2-dimensional disk and there
are no exceptional orbits (i.e. no finite isotropy groups), and if xi ∈ Zn denotes the slope of
the i th S1 isotropy group G(xi ) ⊂ Tn, i = 1, . . . , N , then

π1(M) ⊂ Zn/〈x1, . . . , x N 〉. (2.1)

In particular, if the S1 isotropy groups span Tn (i.e. some n of the xi give an (n × n)-matrix
with nonzero determinant), then π1(M) is finite, and if the S1 isotropy groups generate Tn (i.e.
some n of the xi give an (n × n)-matrix with determinant ±1), then M is simply connected.
Note that, if the S1 isotropy groups do not span Tn , then M is diffeomorphic to a product
M′ ×S1, where M′ is an (n + 1)-manifold with an effective Tn−1 action (cf. [23]). Hence we
will always assume that the S1 isotropy groups span Tn .

That the S1 isotropy groups give trivial elements of the fundamental group can be explained
as follows. Let p ∈ M such that Tn �p is a principal orbit and let q ∈ M such that Tn �q is a
singular orbit with isotropy group G(xi ) of slope xi . Take a geodesic γi (t) from p to q . Then
G(xi ) � γi (t) is a disk, since G(xi ) � q = q , and hence G(xi ) � p is homotopically trivial.

3 T2 actions on 4-manifolds

As discussed in Sect. 2, the orbit space M∗ of a smooth, effective T2 action on a smooth,
compact, simply connected 4-manifold M is an oriented 2-disk whose interior consists of
principal orbits and boundary contains k � 2 isolated points corresponding to orbits with
isotropy T2, i.e. fixed points. Arcs in the boundary between these points correspond to orbits
with circle isotropy groups G(mi , ni ), 1 � i � k, where gcd(mi , ni ) = 1.

Represent M in terms of its weighted orbit space, that is

M = {

x1 = (m1, n1), . . . , xk = (mk, nk)
}

.
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138 F. Galaz-Garcia, M. Kerin

In order for an orbit space M∗ to be legally weighted, it is necessary to have

det

(

mk nk

m1 n1

)

= ε1 = ±1 and det

(

mi−1 ni−1

mi ni

)

= εi = ±1, i = 2, 3, . . . , k.

(3.1)

Assume without loss of generality that M∗ is oriented from xi = (mi , ni ) to xi+1 =
(mi+1, ni+1) and recall that actions on M are in one-to-one correspondence with weights
in the orbit space.

Orlik and Raymond [24] have shown that M is equivariantly diffeomorphic to a connected
sum of S4, ±CP2 and S2×S2. However, as we are only interested in 4-manifolds which admit
a Riemannian metric of non-negative curvature and maximal symmetry rank, in particular
CP2#±CP2 and S2×S2, we may restrict our attention to the case where there are exactly four
isolated fixed points on the boundary. This follows from the fact that χ(M) = χ(Fix(M, T2)).

Without loss of generality we may reparametrize our T2 action and assume that the
weighted orbit space is of the form shown in Fig. 2.

Since the orbit space is assumed to be legally weighted, it follows from (3.1) that ε2 =
1, a = −ε3, d = −ε1 and hence ε1ε3 − bc = ε4 = ε2ε4. Therefore ad = −2ε4 (whenever
ε1ε3 = −ε2ε4 = −ε4) or 0 (whenever ε1ε3 = ε2ε4 = ε4), from which it follows that
(b, c) = ±(1,−2ε4) or ±(−2ε4, 1) or (0, k) or (k, 0) for some k ∈ Z. From [24, Section 5], in
the first case M is diffeomorphic to CP2#CP2, while in the latter two cases M is diffeomorphic
to CP2# − CP2 or S2 × S2, depending on the parity of k. Thus, up to reparametrization and
reordering, all possible legally weighted orbit spaces are given in Fig. 3 below.

Fig. 2 Weighted orbit space for a T2 action on M4

Fig. 3 Possible legally weighted orbit spaces for CP2# ± CP2 and S2 × S2
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Cohomogeneity-two torus actions in low dimensions 139

4 T3 actions on 5-manifolds

Let M be a smooth, compact, simply connected 5-manifold with a smooth, effective T3

action. By the discussion in Sect. 2, the orbit space M∗ of the action is an oriented 2-disk
whose interior consists of principal orbits and its boundary contains k � 3 isolated points
corresponding to orbits with isotropy T2. As before, arcs in the boundary between these
points correspond to orbits with circle isotropy groups G(�i , mi , ni ), 2 � i � k, where
gcd(�i , mi , ni ) = 1, and M may be represented in terms of its weighted orbit space, i.e.

M = {

x1 = (�1, m1, n1), . . . , xk = (�k, mk, nk)
}

.

Oh [23] has classified such manifolds up to equivariant diffeomorphism. Indeed, if k =
3, M (together with its T3 action) is equivariantly diffeomorphic to S5 equipped with a linear
action, while, for k � 4, M is equivariantly diffeomorphic to either #(k − 3)(S3 × S2) or
(S3×̃S2)#(k − 4)(S3 × S2), depending respectively on whether the second Stiefel–Whitney
class w2(M) is trivial or not.

As manifolds which admit a Riemannian metric with non-negative curvature and maximal
symmetry rank are the focus of our attention, by [11] we may therefore assume that k = 4,
namely that M is one of S3 × S2 or S3×̃S2.

By a suitable reparametrization of the T3 action, if necessary, we may assume that the
orbit space of these manifolds looks like the one in Fig. 4 below.

Notice that x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (p, q, r) and x4 = (x, y, z) generate
〈(1, 0, 0), (0, 1, 0), (0, 0, gcd(r, z))〉 ⊂ Z3. Therefore, from (2.1) we deduce that π1(M) ⊂
Zgcd(r,z). In fact, as the following proposition shows, we can do better.

Proposition 4.1 If T3 acts smoothly and effectively on a smooth, compact 5-manifold M
with (legally) weighted orbit space as in Fig. 4, then π1(M) = Zgcd(r,z). In particular, if M
is simply connected, then gcd(r, z) = 1.

Proof We want to use the theorem of van Kampen. Let b ∈ M lie on a principal orbit and
let {e1, e2, e3)} denote the standard basis in R3. The circle of slope (�1, �2, �3) in T3 is,
as always, denoted by G(�1, �2, �3). Set Gi := G(ei ), i = 1, 2, 3. In particular, from [23]
[cf. (2.1)] we know that π1(M, b) is generated by the homotopy classes (of circle orbits)
[G1 �b], [G2 �b] and [G3 �b]. Denote the arcs in M∗ with weights (0, 1, 0) and (x, y, z) by
L∗

1 and L∗
2 respectively, and their respective pre-images under the T3 action by L1 and L2.

Divide M into two open regions �1 and �2, centered around L1 and L2 respectively, and
with b ∈ �1 ∩ �2. We may assume that �i is a 2-disk bundle over the corresponding arc
Li , i = 1, 2, since the isotropy group G3 (resp. G(x, y, z)) acts freely away from L1 (resp.
L2) (see [3, Chapter VI, Theorem 2.2]). Then the orbit space of M under the T3 action is as
in Fig. 5.

Fig. 4 Weighted orbit space for a T3 action on M5
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140 F. Galaz-Garcia, M. Kerin

Fig. 5 Van Kampen decomposition of M

Fig. 6 �∗
2 after reparametrization

The points in the interior of the arc L∗
1 correspond to points in M with isotropy G2,

while the endpoints of L∗
1 correspond to points in M with isotropy given by G1 × G2 and

G2 × G(p, q, r) respectively. We can therefore think of L∗
1 as the quotient of a G1 × G3 =

T3/G2 action on the 3-manifold L1, where the interior of L∗
1 corresponds to points with

trivial isotropy and the endpoints to points with isotropy G(1, 0) and G(p, r) respectively.
By the work of Orlik and Raymond [24], we know that L1 is a lens space L(r; p).

As �1 is a D2-bundle over L1, and since G1 �b and G2 �b are homotopically trivial in �1,
it follows that π1(�1, b) ∼= π1(L1) = 〈[G3 �b]〉/〈p[G3 �b]〉 = Zr .

Since M∗ is legally weighted, there existλ,μ ∈ Z such thatλy+μz = 1. Let A : R3 → R3

be the linear map given by

A =
⎛

⎝

1 −λx −μx
0 z −y
0 λ μ

⎞

⎠ .

Since det A = 1, it follows that we can reparametrize our T3 action by A, that is, Aei , i =
1, 2, 3, generate T3. Notice in particular that

Ae1 = e1, A

⎛

⎝

x
y
z

⎞

⎠ = e3 and A

⎛

⎝

p
q
r

⎞

⎠ =
⎛

⎝

p − (λq + μr)x
qz − ry
λq + μr

⎞

⎠ .

In terms of the new parameters, denote circles of slope ei and (p−(λq +μr)x, qz−ry, λq +
μr) by G̃i and G̃

′
respectively. Then we may relabel �∗

2 as in Fig. 6.
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Cohomogeneity-two torus actions in low dimensions 141

Hence, as for L1, we deduce that L2 is a lens space L(qz−ry; p−(λq+μr)x) and therefore
π1(�2, b) ∼= π1(L2) = 〈[G̃3 � b]〉/〈(qz − ry)[G̃3 � b]〉 = Zqz−r y , where λy + μz = 1.
In our original coordinate system it follows that π1(�2, b) ∼= 〈[G(0, μ,−λ) � b]〉/〈(qz −
ry)[G(0, μ,−λ) � b]〉, since A(0, μ,−λ)t = e2.

Consider now �1∩�2. By the same reasoning as in [23], π1(�1∩�2, b) is generated by the
homotopy classes [G1 �b], [G2 �b] and [G3 �b]. Furthermore, [G1 �b] = [G(p, q, r) � b] =
0 ∈ π1(�1 ∩ �2, b).

The inclusion maps induce homomorphisms ιi : π1(�1 ∩ �2, b) → π1(�i , b), i =
1, 2. It is clear from our previous discussion of π1(�1, b) that ι1([G3 �b]) = [G3 �b] and
ι1([G2 �b]) = [G2 �b] = 0. On the other hand, since A−1 gives a reparametrization of T3,

ι2([G3 �b]) = ι2 (−y [G(0, μ,−λ) � b] + λ [G(x, y, z) � b] − μx [G1 �b])

= −yι2 ([G(0, μ,−λ) � b]) + λι2 ([G(x, y, z) � b])

= −y [G (0, μ,−λ) � b] + λ [G(x, y, z) � b]

= −y [G (0, μ,−λ) � b]

since [G(x, y, z) � b] = 0 ∈ π1(�2, b). Similarly ι2([G2 �b]) = z[G(0, μ,−λ) � b].
Let [α] = [G3 �b] ∈ π1(�1, b) and [β] = [G(0, μ,−λ) � b] ∈ π1(�2, b). Then, by van

Kampen’s Theorem

π1(M, b) = (π1(�1, b) ∗ π1(�2, b)) /〈ι1([Gi �b]) = ι2([Gi �b]), i = 2, 3〉
= 〈[α], [β] | r [α] = 0, (qz − ry)[β] = 0〉/〈[α] = −y[β], z[β] = 0〉
= 〈[β] | z[β] = 0, ry[β] = 0〉
= 〈[β] | gcd(z, ry)[β] = 0〉
= Zgcd(r,z), since gcd(y, z) = 1.

��
Corollary 4.2 If T3 acts smoothly and effectively on a smooth, compact, simply connected
5-manifold M5 with (legally) weighted orbit space as in Fig. 4, then

gcd(r, z)=1, gcd(p, r)=1, gcd(y, z)=1 and gcd(py − qx, r x − pz, qz − ry)=1.

(4.1)

Proof The fact that gcd(r, z) = 1 follows directly from Proposition 4.1. From the discussion
in Sect. 2 the orbit space is legally weighted if and only if there exist triples y

i
= (αi , βi , γi ) ∈

Z3, i = 1, 2, 3, 4, such that

det

⎛

⎝

y
1

x1
x2

⎞

⎠ = ±1, det

⎛

⎝

y
2

x2
x3

⎞

⎠ = ±1, det

⎛

⎝

y
3

x3
x4

⎞

⎠ = ±1 and det

⎛

⎝

y
4

x4
x1

⎞

⎠ = ±1.

This is possible if and only if the other three gcd conditions hold. ��
Suppose that we have a weighted orbit space as in Fig. 4 and that the conditions in (4.1)

hold. Set a = z, b = −(r x − pz), c = r and d = qz−ry. Then gcd(a, c) = 1, gcd(a, d) =
1 and gcd(b, c) = 1. Let m, n ∈ Z such that am + cn = 1.

Then (am + cn)b = b = −cx + ap, hence c(x + bn) = a(p − bm). Therefore, since
gcd(a, c) = 1, x = −bn − ak and p = bm − ck, for some k ∈ Z. Similarly, it follows that
y = −dn−a� and q = dm−c�, for some � ∈ Z. Further, we find that gcd(b, d, py−qx) = 1
implies that gcd(b, d) = 1.
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Fig. 7 Possible legally weighted orbit spaces for S3 × S2 and S3×̃S2

Therefore all possible legally weighted orbit spaces as in Fig. 4 for a smooth, effective
T3 action on the simply connected manifolds S3 × S2 and S3×̃S2 are given by Fig. 7,
where gcd(a, c) = gcd(a, d) = gcd(b, c) = gcd(b, d) = 1, hence gcd(ab, cd) = 1, and
k, �, m, n ∈ Z with am + cn = 1.

5 Free actions on S3 × S3

Recall that S3×S3 is a Lie group consisting of pairs of unit quaternions, i.e. pairs
( q1

q2

)

where

qn = αn + βn j , with αn, βn ∈ C, |αn |2 + |βn |2 = 1, for n = 1, 2. Recall that i j = − j i and
so, in particular, β j = j β̄ for all β ∈ C.

Define S1
j := {β j | β ∈ C, |β| = 1} ⊂ S3. The image under the quotient map of points

( q1

q2

)

∈ S3 × S3 and subgroups H ⊂ S3 × S3 will always be denoted by
[ q1

q2

]

and [H]
respectively.

Let 〈 , 〉0 be a bi-invariant metric on S3 × S3. The usual isometric T4 action on (S3 ×
S3, 〈 , 〉0), namely

(u, v, w, z) �

(

q1

q2

)

=
(

uq1v̄

wq2 z̄

)

, (u, v, w, z) ∈ T4, q1, q2 ∈ S3,

is not effective. Consider instead the T4 action given by

(u, v, w, z) �

(

q1

q2

)

=
(

uα1 + vβ1 j
wα2 + zβ2 j

)

, (u, v, w, z) ∈ T4, q1, q2 ∈ S3. (5.1)

This action is clearly effective. Moreover, it is an isometric action since it may be rewritten
as a (well-defined) two-sided action as follows:

(u, v, w, z) �

(

q1

q2

)

=
(

u
1
2 v

1
2 q1u

1
2 v̄

1
2

w
1
2 z

1
2 q2w

1
2 z̄

1
2

)

.

Remark 5.1 Define S(U(2)×U(2)) := {(A, B) ∈ U(2)×U(2) | det(A) = det(B)}. Then the
action (5.1) can, in fact, be thought of as an action of T4 ⊂ S(U(2)×U(2))2 on SU(2)×SU(2)

since, for example, an S1 action z �q = z
2k+1

2 qz̄
2�+1

2 , q = α+β j ∈ S3, z ∈ S1, is equivalent
to an action of S1 ⊂ S(U(2) × U(2)) on SU(2) via
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z �

(

α β

−β̄ ᾱ

)

=
(

zk

z̄k+1

)(

α β

−β̄ ᾱ

) (

z̄�

z�+1

)

.

Consider the tuples (a, b, c, d), (−n, k, m, �) ∈ Z4, such that am + cn = 1. As

det

⎛

⎜

⎜

⎝

0 1 0 0
0 0 0 1

−n k m �

a b c d

⎞

⎟

⎟

⎠

= am + cn = 1

we may reparametrize the effective, isometric action (5.1) via

(u, v, w, z) �→
(

zaw̄n, uzbwk, zcwm, vzdw�
)

to give an effective, isometric T4 action on (S3 × S3, 〈 , 〉0) via

(u, v, w, z) �

(

q1

q2

)

=
(

zaw̄nα1 + uzbwkβ1 j
zcwmα2 + vzdw�β2 j

)

. (5.2)

In particular, if the circle (resp. torus) given by the z-coordinate (resp. (w, z)-coordinates)
acts freely on S3 × S3, then there is an induced effective, isometric action on the quotient by
the (u, v, w)-torus (resp. (u, v)-torus).

This raises the question of when the z-circle and (w, z)-torus act freely. It is easy to check
that S1 acts freely on S3 × S3 via

z �

(

q1

q2

)

=
(

zaα1 + zbβ1 j
zcα2 + zdβ2 j

)

(5.3)

if and only if gcd(a, c) = gcd(a, d) = gcd(b, c) = gcd(b, d) = 1, that is, if and only if
gcd(ab, cd) = 1. We denote the quotient (S3 × S3, 〈 , 〉0)//S1 by M5

a,b,c,d .

DeVito [5] has classified up to diffeomorphism all possible biquotients (S3×S3)//S1. More
precisely, he has shown that only S3 ×S2 and S3×̃S2 can arise. Since both of these manifolds
satisfy H2(M5; Z) = Z, this classification amounts to computing the second Stiefel–Whitney
class w2((S3 × S3)//S1) ∈ H2(M5; Z2) (cf. [1]). A consequence of DeVito’s classification
is that the quotient resulting from the explicit displayed action suggested by Pavlov [25] and
claimed to be S3×̃S2, in fact has w2 = 0, hence must be diffeomorphic to S3 × S2. In the
paragraph preceding this displayed action, Pavlov describes in words an action which gives
the correct quotient.

It can be shown that w2(M5
a,b,c,d) = a + b + c + d ∈ Z2. Hence, together with the

freeness condition, it follows that M5
a,b,c,d is diffeomorphic to S3×̃S2 if and only if exactly

one of a, b, c or d is even (and is diffeomorphic to S3 × S2 otherwise). It should be noted
that although we have parametrized our S1 actions on S3 × S3 differently to those in [5], the
computation of the Stiefel–Whitney class w2 is completely analogous to the computation
carried out therein, and hence has been omitted.

On the other hand, T2 acts freely on S3 × S3 via

(w, z) �

(

q1

q2

)

=
(

zaw̄nα1 + zbwkβ1 j
zcwmα2 + zdw�β2 j

)

(5.4)

if and only if (without loss of generality)

am + cn = 1, a� + dn = ε2, bm − ck = ε3 and b� − dk = ε4, (5.5)

where ε2, ε3, ε4 = ±1.
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Lemma 5.2 Suppose a, c ∈ Z are relatively prime and let m0, n0 ∈ Z such that am0+cn0 =
1. Then m, n ∈ Z satisfy am +cn = 1 if and only if there exists x ∈ Z such that m = m0 −cx
and n = n0 + ax.

Proof As the cases a = 0 and c = 0 are trivial, assume that a, c �= 0. By subtracting
am + cn = 1 from am0 + cn0 = 1 it follows that a(m0 − m) = −c(n0 − n). But a and c
are assumed to be relatively prime, hence n0 − n = −ax and m0 − m = cx for some x ∈ Z.

��
Using this lemma, one can describe all possible free T2 actions on S3 × S3. In the case

where ε2ε3ε4 = 1 it turns out that, up to reparametrization of the action and diffeomorphisms
of S3 × S3 (namely q1 ↔ q2 and qi �→ q̄i ), the action has the form

(w, z) �

(

q1

q2

)

=
(

zw̄rα1 + zwr+λβ1 j
wα2 + wβ2 j

)

(5.6)

where r ∈ Z and λ ∈ {0, 1}. Furthermore, M4
r,λ := (S3 × S3, 〈 , 〉0)// T2 is diffeomorphic

to S2 × S2 for λ = 0, and to CP2# − CP2 for λ = 1. This follows from work in [5] via a
change of parameters (cf. also [4,19,30]).

In the case where ε2ε3ε4 = −1 it can be shown that, up to reparametrization of the action
and diffeomorphisms of S3 × S3, the action has the form

(w, z) �

(

q1

q2

)

=
(

zα1 + wβ1 j
z̄wα2 + zwβ2 j

)

. (5.7)

The quotient M4 = (S3 × S3, 〈 , 〉0)// T2 is diffeomorphic to CP2#CP2 (cf. [5,30]).

Remark 5.3 Recall that the only smooth, compact, simply connected 4-manifolds admitting
both non-negative curvature and an isometric circle action are S4, CP2, CP2# ± CP2 and
S2×S2 (cf. [20,29]). The long exact homotopy sequence for a fibration T2 → S3×S3 → M4

shows that S4 and CP2 cannot arise as biquotients (S3 × S3, 〈 , 〉0)// T2.

6 Torus actions on four-dimensional biquotients

In the T4 action described by (5.2), let T2
uv and T2

wz denote the 2-tori given by the (u, v) and
(w, z) coordinates respectively. Consider the induced effective, isometric T2

uv action on any
M4 = (S3 × S3)// T2

wz , where T2
wz acts freely [as in (5.6) or (5.7)], namely

(u, v) �

[

q1

q2

]

=
[

α1 + uβ1 j
α2 + vβ2 j

]

. (6.1)

It is clear that the quotient of S1 × S1 ⊂ S3 × S3 under T2
wz is a point, whereas S1 × S3 ⊂

S3 × S3 has quotient diffeomorphic to S2. Similarly, S1 × S1
j , S1

j × S1 and S1
j × S1

j quotient

to points, while S1
j × S3, S3 × S1 and S3 × S1

j have quotients diffeomorphic to S2.

For each of the biquotients (S3 × S3, 〈 , 〉0)// T2
wz we will determine the fixed-point set of

the corresponding effective, isometric T2
uv action, as well as any additional isotropy that may

arise. As mentioned in Sect. 2, the only possible isotropy groups of an effective T2 action on
a four-dimensional manifold are S1 and T2.

Lemma 6.1 Let T2
wz act on (S3 × S3, 〈 , 〉0) via (5.6) and let T2

uv act on M4
r,λ

= (S3 × S3, 〈 , 〉0)// T2
wz via (6.1). Then the fixed points of the action are the four points
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[S1 ×S1], [S1
j × S1], [S1 × S1

j ], [S1
j ×S1

j ] ∈ S3 × S3// T2
k,ε, while a point has S1 isotropy if

and only if it lies in one of the four two-spheres [S1 × S3], [S1
j × S3], [S3 × S1] or [S3 × S1

j ].
In particular, the S1 isotropy subgroups of T2

uv are arranged according to the diagram

[S1 × S1] {(u,1)}
[S1×S3]

{(1,v)} [S3×S1]

[S1 × S1
j ]

{(v2r+λ,v)}[S3×S1
j ]

[S1
j × S1] {(u,1)}

[S1
j ×S3] [S1

j × S1
j ]

(6.2)

Proof Suppose that

[

q1

q2

]

∈ M4
r,λ is fixed by some element of T2

uv . That is, there exist

(w, z) ∈ T2
wz such that

(

α1 + β1 j
α2 + β2 j

)

=
(

q1

q2

)

=
(

zw̄rα1 + uzwr+λβ1 j
wα2 + wvβ2 j

)

.

Then each of the following four conditions must hold:

• α1 = 0 or zw̄r = 1;
• β1 = 0 or uzwr+λ = 1;
• α2 = 0 or w = 1;
• β2 = 0 or wv = 1.

First suppose that α1 = α2 = 0. Then w = v̄ and 1 = uzwr+λ = uzv̄r+λ, since |β1| =
|β2| = 1. Therefore z = ūvr+λ and hence for all (u, v) we have (u, v)�[S1

j ×S1
j ] = [S1

j ×S1
j ].

That is, [S1
j × S1

j ] is a fixed point of the T2
uv action.

The analogous computations in the cases β1 = α2 = 0, α1 = β2 = 0 and β1 = β2 = 0
show that [S1 × S1

j ], [S1
j × S1] and [S1 × S1], respectively, are also fixed points of the T2

uv

action.
By effectiveness of the T2

uv action, it is clear that whenever all of α1, α2, β1 and β2 are
non-zero, the isotropy group is trivial.

Now suppose that α2 = 0 and α1, β1 �= 0. Then w = v̄ and zw̄r = 1 = uzwr+λ. Hence
z = v̄r = ūvr+λ, from which it follows that u = v2r+λ. Therefore each point of [S3 × S1

j ]
is fixed by the circle {(v2r+λ, v)} in T2

uv .
Similarly we find that the points of [S1 × S3], [S1

j × S3] and [S3 × S1] are fixed by the

circles {(u, 1)}, {(u, 1)} and {(1, v)} in T2
uv respectively. ��

Proposition 6.2 Every smooth, effective T2 action on S2 × S2, CP2# − CP2 or CP2#CP2

is equivariantly diffeomorphic to an effective, isometric T2
uv action on the corresponding

biquotient (S3 × S3, 〈 , 〉0)// T2
wz .

Proof From the discussion in Sect. 3 we know that there is a unique smooth, effective
T2 action on CP2#CP2 up to equivariant diffeomorphism. It is clear, therefore, that this
action must correspond to the effective, isometric T2

uv action on the biquotient CP2#CP2 =
S3 × S3// T2

wz , for T2
wz acting via (5.7).
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From diagram (6.2) in Lemma 6.1 it follows that the weighted orbit space of a T2
uv action

on M4
r,λ (that is, the diagram of slopes of S1 isotropy groups in T2

uv) is given by

[S1 × S1] (1,0)

(0,1)

[S1 × S1
j ]

(2r+λ,1)

[S1
j × S1]

(1,0)
[S1

j × S1
j ]

(6.3)

where r ∈ Z and λ ∈ {0, 1}. When λ = 0 (resp. λ = 1) it is clear from the discussion in
Sect. 3 that all possible weighted orbit spaces for S2 × S2 (resp. CP2# − CP2) are achieved.

��
Remark 6.3 A simple observation is that for each pair (r, s) ∈ Z2 there is a three-dimensional
orbifold X3

r,s such that S2 × S2 and CP2# − CP2 arise as the total spaces of particular S1-
bundles over X3

r,s . Indeed, the three-torus action on (S3 × S3, 〈 , 〉0) defined by

(u, w, z) �

(

q1

q2

)

=
(

zw̄r ūsα1 + zwr+1usβ1 j

wūα2 + wuβ2 j

)

is effective and isometric. Denote the quotient space (S3 × S3, 〈 , 〉0)//T 3
uwz by X3

r,s . It fol-
lows from the work of Perelman [27,28] that the orbifold X3

r,s is homeomorphic to S3 as a
topological manifold. The subtori given by restriction to the (z, w) and (z, u) coordinates are
both of the form (5.6) and have quotients CP2# −CP2 and S2 ×S2 respectively. In each case
the remaining effective and isometric (u or w) circle action on the 4-manifold has isotropy
subgroups arranged according to the diagram

[S1 × S1] Z2

[S1×S3]

Z|2(r+s)+1| [S3×S1]

[S1 × S1
j ]

Z|2(r−s)+1|[S3×S1
j ]

[S1
j × S1]

Z2

[S1
j ×S3] [S1

j × S1
j ]

where the vertices are fixed points of the action. In the context of Fintushel’s classification
of smooth, effective circle actions on smooth, compact, simply-connected 4-manifolds via
Seifert invariants (αi , βi ) [8], this shows that there are infinitely many smooth, effective circle
actions on CP2# − CP2 and S2 × S2 having the same αi invariants (i.e. the orders of the
isotropy groups), and so these actions must be distinguished by their (harder to compute) βi

invariants.

Remark 6.4 In the cases of CP2#±CP2 and S2 ×S2, Corollary B can also be proven directly,
without appealing to Theorem A, by determining (up to equivariant diffeomorphism) all
possible isometric circle actions on these manifolds in terms of Fintushel’s classification
of smooth, effective circle actions on smooth, compact, simply connected 4-manifolds [8]
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and then performing computations similar to those in this section to show that each of
these actions is realised by an effective, isometric circle action on the corresponding normal
biquotient.

For fixed point homogeneous circle actions, that is, those where the fixed point set of
the action has a two-dimensional component (cf. [14] and [10]), all possible weighted orbit
spaces (hence all such actions on these manifolds) were determined in [10]. One can then
reach the conclusion of Corollary B without using the work of Grove and Wilking [15]. To
determine the weighted orbit spaces for circle actions which are not fixed point homogeneous,
one must combine Fintushel’s classification with Theorem 2.4 in [15].

7 Torus actions on five-dimensional biquotients

From Oh’s classification of smooth cohomogeneity-two torus actions on smooth 5-
manifolds [23], we know that there is, up to equivariant diffeomorphism, a unique effective
smooth T3 action on S5. This is, of course, realized by the linear (isometric) T3 action on
the homogeneous space S5 = SO(6)/ SO(5). As we are interested only in those simply con-
nected 5-manifolds which admit a T3-invariant metric with non-negative curvature, that is,
S5, S3 × S2 and S3×̃S2 (cf. [11]), we may restrict our attention from now on to smooth T3

actions on the manifolds S3 × S2 and S3×̃S2.
Let S1 act freely and isometrically on (S3 × S3, 〈 , 〉0) via (5.3). Denote the quotient

(S3 × S3, 〈 , 〉0)//S1 by M5
a,b,c,d . By the discussion in Sect. 5, M5

a,b,c,d is diffeomorpic to

S3 × S2 or S3×̃S2 depending on the parity of a + b + c + d .
Consider the effective, isometric T4 action on (S3×S3, 〈 , 〉0) in (5.2). The complementary

three-dimensional torus T3
uvw to the z-circle in T4 then acts on M5

a,b,c,d effectively and
isometrically via

(u, v, w) �

[

q1

q2

]

=
[

w̄nα1 + uwkβ1 j

wmα2 + vw�β2 j

]

(7.1)

where (u, v, w) ∈ T3
uvw,

[

q1

q2

]

∈ M5
a,b,c,d , k, �, m, n ∈ Z and am + cn = 1.

Lemma 7.1 Let T3
uvw act effectively and isometrically on M5

a,b,c,d via the action (7.1). Then

the four points [S1 ×S1], [S1
j ×S1], [S1 ×S1

j ], [S1
j ×S1

j ] ∈ M5
a,b,c,d each have T2 isotropy,

while a point has S1 isotropy if and only if it lies in one of [S1 × S3], [S1
j × S3], [S3 × S1]

or [S3 × S1
j ]. In particular, the S1 isotropy subgroups of T3

uvw are arranged according to the
diagram:

[S1 × S1] {(1,v,1)}
[S1×S3]

{(u,1,1)} [S3×S1]

[S1 × S1
j ]

{(w̄bn+ak ,w̄dn+c�,wa)}[S3×S1
j ]

[S1
j × S1]

{(wbm−ck ,wdm−c�,wc)}
[S1

j ×S3] [S1
j × S1

j ]

(7.2)
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Proof Suppose that

[

q1

q2

]

is fixed by some element (u, v, w) of T3
uvw . That is, there exists

z ∈ S1 such that
(

α1 + β1 j
α2 + β2 j

)

=
(

zaw̄nα1 + uzbwkβ1 j
zcwmα2 + vzdw�β2 j

)

.

Then each of the following four conditions must hold:

• α1 = 0 or zaw̄n = 1;
• β1 = 0 or uzbwk = 1;
• α2 = 0 or zcwm = 1;
• β2 = 0 or vzdw� = 1.

By effectiveness of the T3
uvw action, it is clear that whenever all of α1, α2, β1 and β2 are

non-zero, the isotropy group is trivial.
Suppose first that β1 = β2 = 0. Then zaw̄n = 1 and zcwm = 1, from which it follows

that w = z = 1, since am + cn = 1. Thus the isotropy subgroup of the point [S1 × S1] is
given by

T2 ∼= {(u, v, 1)} ⊂ T3
uvw .

If α1 = α2 = 0, then u = z̄bw̄k and v = z̄dw̄�, since |β1| = |β2| = 1. Therefore the isotropy
subgroup of the point [S1

j × S1
j ] is

T2 ∼=
{(

z̄bw̄k, z̄dw̄�, w
)}

⊂ T3
uvw .

Suppose now that β1 = α2 = 0. Then zaw̄n = 1 and v = z̄dw̄�. Let ζ ∈ S1 such that
ζ a = w. It follows by setting z = ζ n that za = wn and v = ζ̄ dn+a�. Hence the isotropy
subgroup of the point [S1 × S1

j ] is given by

T2 ∼=
{(

u, ζ̄ dn+a�, ζ a
)}

⊂ T3
uvw .

We remark that gcd(a, dn + a�) = 1, since gcd(ab, cd) = 1 and am + cn = 1.
The analogous computation for α1 = β2 = 0 shows that the isotropy subgroup of the

point [S1
j × S1] is given by

T2 ∼=
{(

ζ bm−ck, v, ζ c
)}

⊂ T3
uvw .

Suppose, on the other hand, that β1 = 0 and α2, β2 �= 0. Then zaw̄n = 1, zcwm = 1 and
v = z̄dw̄�. As before it follows from am + cn = 1 that w = z = 1, hence v = 1. Therefore
the isotropy subgroup of a generic point in [S1 × S3] is

S1 ∼= {(u, 1, 1)} ⊂ T3
uvw .

Similarly, generic points in [S3 × S1] (i.e. points for which β2 = 0 and α1, β1 �= 0) have
isotropy subgroup

S1 ∼= {(1, v, 1)} ⊂ T3
uvw .

If now α2 = 0 and α1, β1 �= 0, then v = z̄d w̄�, u = z̄bw̄k and zaw̄n = 1. As above, let
ζ ∈ S1 such that ζ a = w and set z = ζ n . Then u = ζ̄ bn+ak and v = ζ̄ dn+a�. Therefore a
generic point in [S3 × S1

j ] has isotropy subgroup

S1 ∼=
{(

ζ̄ bn+ak, ζ̄ dn+a�, ζ a
)}

⊂ T3
uvw .
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The computation to show that a generic point in [S1
j × S3] (i.e. α1 = 0 and α2, β2 �= 0) has

isotropy subgroup

S1 ∼=
{(

ζ bm−ck, ζ dm−c�, ζ c
)}

⊂ T3
uvw

is completely analogous. ��
Proposition 7.2 Every smooth, effective T3 action on either S3 × S2 or S3×̃S2 is equivari-
antly diffeomorphic to an effective, isometric T3

uvw action on the corresponding biquotient
M5

a,b,c,d = (S3 × S3, 〈 , 〉0)//S1.

Proof From diagram 7.2 in Lemma 7.1 it follows that the weighted orbit space of an effective,
isometric T3 action on M5

a,b,c,d (that is, the diagram of slopes of S1 isotropy groups in T3
uvw)

is given by

[S1 × S1] (1,0,0)

(0,1,0)

[S1 × S1
j ]

(−bn−ak,−dn−a�,a)

[S1
j × S1]

(bm−ck,dm−c�,c)
[S1

j × S1
j ]

(7.3)

where gcd(ab, cd) = 1, am + cn = 1, and k, � ∈ Z. It is then clear from the discussion in
Sect. 4 that all possible (legally) weighted orbit spaces for S3 × S2 and S3×̃S2 are achieved.

��

8 Principal circle bundles

Let B be an arbitrary simply connected manifold. It is well known that oriented (hence
principal) circle bundles over B are classified by their Euler classes in the second integral
cohomology H2(B; Z). Since B is simply connected, the total space P of the bundle is simply
connected if and only if the Euler characteristic is primitive, i.e. a generator of H2(B; Z).

As a consequence of their analysis of oriented circle bundles over compact, simply con-
nected 4-manifolds, Duan and Liang [6] have shown that if P is simply connected and the total
space of a principal circle bundle over S2 ×S2 or CP2#±CP2, then it must be diffeomorphic
to one of S3 × S2 or S3×̃S2. On the other hand, Grove and Ziller [17, Theorem 4.5] have
observed that simply connected principal circle bundles over S2 × S2 and CP2# ± CP2 all
arise by considering circle sub-actions of free (isometric) torus actions on S3 × S3, namely

S1 = T2 /S1 −→ (S3 × S3)//S1 −→ (S3 × S3)// T2 .

From the discussions in previous sections, one can make the following observation.

Proposition 8.1 Suppose T2 acts freely and isometrically on S3 × S3. Embed S1 into T2 via
z �→ (z p, zq), p, q ∈ Z, gcd(p, q) = 1, and denote this circle subgroup S1

p,q . Consider the

principal S1-bundle

S1 = T2 /S1
p,q −→ X5

p,q := (S3 × S3)//S1
p,q −→ M4 := (S3 × S3)// T2 .
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(a) If M4 = S2 × S2, then X5
p,q = S3 × S2 for all p, q.

(b) If M4 = CP2# − CP2, then X5
p,q = S3 × S2 for p even and X5

p,q = S3×̃S2 for p odd.

(c) If M4 = CP2#CP2, then X5
p,q = S3 × S2 for p + q even and X5

p,q = S3×̃S2 for p + q
odd.

Proof Recall that every free, isometric T2 action on S3 × S3 is equivalent to one of the T2
wz

actions (5.6) or (5.7) described in Sect. 3. First consider S1
p,q as a sub-action of (5.6). Then

S1
p,q acts on S3 × S3 via

z �

(

q1

q2

)

=
(

zq−prα1 + zq+p(r+λ)β1 j
z pα2 + z pβ2 j

)

.

From (5.3) it follows that a = q − pr, b = q + p(r + λ), c = p and d = p. Since
w2(X5

p,q) = a + b + c + d ∈ Z2, in the cases of M4 = S2 × S2 and M4 = CP2# − CP2 we

are done. The case M4 = CP2#CP2 is similar. ��
It is now natural to ask whether every free (isometric) S1 action on S3 × S3 extends to a

free (isometric) T2 action, and hence defines a principal circle bundle as above. This amounts
to asking whether the effective T3 action in (7.1) contains a free circle sub-action.

Lemma 8.2 Let M5
a,b,c,d = (S3 × S3, 〈 , 〉0)//S1 be as in Sect. 5 and let T3

uvw act on

M5
a,b,c,d via the action (7.1). Up to reparametrization, a circle embedded in T3

uvw via

u �→ (u p, uq , ur ), gcd(p, q, r) = 1, acts freely on M5
a,b,c,d if and only if r = 1 and

a(q + �) + dn = ±1, c(p + k) − bm = ±1, and b(q + �) − d(p + k) = ±1

for some choice of signs. Furthermore, a necessary condition for such an S1 action to be free
is

bd ± ac ± ad ± bc = 0 (8.1)

for some choice of signs.

Proof The S1 action on M5
a,b,c,d is given by

u �

[

q1

q2

]

=
[

ūrnα1 + u p+rkβ1 j
urmα2 + uq+r�β2 j

]

We may assume that each of qn ∈ S3, n = 1, 2, is in one of S1 or S1
j , since allowing both αn

and βn to be non-zero will only increase the number of freeness conditions to be satisfied.

Then u �

[

q1

q2

]

=
[

q1

q2

]

if and only if there exists some z ∈ S1 such that

(

α1 + β1 j
α2 + β2 j

)

=
(

ūrnzaα1 + u p+rk zbβ1 j
urm zcα2 + uq+r�zdβ2 j

)

.

That is, if and only if there is some z ∈ S1 such that

(i) ūrnza = 1 and urm zc = 1; or
(ii) ūrnza = 1 and uq+r�zd = 1; or

(iii) u p+rk zb = 1 and urm zc = 1; or
(iv) u p+rk zb = 1 and uq+r�zd = 1.
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In each case, if u = 1 then z = 1 by freeness of the z action. By (i) we have ūrcn = z̄ac = uram ,
from which it follows that 1 = ur(am+cn) = ur . Hence a necessary condition for freeness is
that r = ±1. Without loss of generality, assume that r = 1.

Similarly, (ii) implies that ūdn = z̄ad = ua(q+�), hence udn+a(q+�) = 1. Then u = 1 if
and only if dn + a(q + �) = ±1. The conditions (iii) and (iv) yield c(p + k) − bm = ±1
and b(q + �) − d(p + k) = ±1 in the same way.

Finally, Eq. (8.1) arises by noticing that (for an appropriate choice of signs)

bd ± ac ± ad ± bc = bd(am + cn) + ac(b(q + �) − d(p + k))

+ad(c(p + k) − bm) − bc(dn + a(q + �))

= 0.

��

Corollary 8.3 There exist infinitely many free (isometric) S1 actions on S3 × S3 which do
not extend to a free (isometric) T2 action, and infinitely many descriptions of S3 × S2 and
S3×̃S2 as biquotients which do not admit a free (isometric) S1 action.

Proof Let S1 act on S3 × S3 via (5.3) with a = −1, b = 3, c = 15k + 1 and d = 5, k ∈ Z.
The action is free, since gcd(ab, cd) = 1. Since the second Stiefel–Whitney class of the
quotient M5

a,b,c,d is w2(M5
a,b,c,d) = a + b + c + d = k ∈ Z2, it therefore follows that both

S3 × S2 and S3×̃S2 arise, depending on the parity of k. Finally, we note that Eq. (8.1) can
never be satisfied for any value of k. ��
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